O'Really?

January 21, 2010

Blogging a Book about Bio-Ontologies

Waterloo Station Ultrawide Panoramic by Tim NugentIf you wanted to write a guide to Biomedical and Biological Ontologies [1], especially the what, why, when, how, where and who, there are at least three choices for publishing your work:

  1. Journal publishing in your favourite scientific journal.
  2. Book publishing with your favourite academic or technical publisher.
  3. Self publishing on a web blog with your favourite blogging software.

Each of these has its own unique problems:

  • The trouble with journals is that they typically don’t publish “how to” guides, although you might be able to publish some kind of review.
  • The trouble with books, and academic books in particular, is that people (and machines) often don’t read them. Also, academic books can be prohibitively expensive to buy and this can make the data inside them less visible and accessible to the widest audience. Unfortunately all that lovely knowledge gets locked up behind publishers paywalls. To add insult to injury, most academic books take a very long time to publish, often several years. By the time of printing, the content of many academic books is often very dated.
  • The trouble with blogs, they aren’t peer-reviewed in the traditional way and they tend to be written by a single person from a not very neutral point of view. Or as Dave once put it “vanity publishing for arrogant people with an inflated ego“. Ouch.

So the people behind the Ontogenesis network (Robert Stevens and Phillip Lord with funding from the EPSRC grant ref: EP/E021352/1) had an idea. Why not blog a book about Ontology? As a publishing experiment – it might just work by combining the merits of books and blogs together in order to overcome their shortcomings. This will involve getting a small group of about twenty people (mostly bio-ontologists) together, and writing about what an ontology is, why you would want to a biomedical ontology, how to build one and so on. We will be doing some of the peer-review online too.

As part of an ongoing experiment, we are posting all this information on a blog called http://ontogenesis.knowledgeblog.org if you’d like to follow, subscribe to the feed and read the manifesto.

References

  1. Yu, A. (2006). Methods in biomedical ontology Journal of Biomedical Informatics, 39 (3), 252-266 DOI: 10.1016/j.jbi.2005.11.006

[Ultrawide panoramic picture of Waterloo station by Tim Nugent]

December 11, 2009

The Semantic Biochemical Journal experiment

utopian documentsThere is an interesting review [1] (and special issue) in the Biochemical Journal today, published by Portland Press Ltd. It provides (quote) “a whirlwind tour of recent projects to transform scholarly publishing paradigms, culminating in Utopia and the Semantic Biochemical Journal experiment”. Here is a quick outline of the publishing projects the review describes and discusses:

  • Blogs for biomedical science
  • Biomedical Ontologies – OBO etc
  • Project Prospect and the Royal Society of Chemistry
  • The Chemspider Journal of Chemistry
  • The FEBS Letters experiment
  • PubMedCentral and BioLit [2]
  • Public Library of Science (PLoS) Neglected Tropical Diseases (NTD) [3]
  • The Elsevier Grand Challenge [4]
  • Liquid Publications
  • The PDF debate: Is PDF a hamburger? Or can we build more useful applications on top of it?
  • The Semantic Biochemical Journal project with Utopia Documents [5]

The review asks what advances these projects have made  and what obstacles to progress still exist. It’s an entertaining tour, dotted with enlightening observations on what is broken in scientific publishing and some of the solutions involving various kinds of semantics.

One conclusion made is that many of the experiments described above are expensive and difficult, but that the costs of not improving scientific publishing with various kinds of semantic markup is high, or as the authors put it:

“If the cost of semantic publishing seems high, then we also need to ask, what is the price of not doing it? From the results of the experiments we have seen to date, there is clearly a need to move forward and still a great deal of scope to innovate. If we fail to move forward in a collaborative way, if we fail to engage the key players, the price will be high. We will continue to bury scientific knowledge, as we routinely do now, in static, unconnected journal articles; to sequester fragments of that knowledge in disparate databases that are largely inaccessible from journal pages; to further waste countless hours of scientists’ time either repeating experiments they didn’t know had been performed before, or worse, trying to verify facts they didn’t know had been shown to be false. In short, we will continue to fail to get the most from our literature, we will continue to fail to know what we know, and will continue to do science a considerable disservice.”

It’s well worth reading the review, and downloading the Utopia software to experience all of the interactive features demonstrated in this special issue, especially the animated molecular viewers and sequence alignments.

Enjoy… the Utopia team would be interested to know what people think, see commentary on friendfeed,  the digital curation blog and youtube video below for more information.

References

  1. Attwood, T., Kell, D., McDermott, P., Marsh, J., Pettifer, S., & Thorne, D. (2009). Calling International Rescue: knowledge lost in literature and data landslide! Biochemical Journal, 424 (3), 317-333 DOI: 10.1042/BJ20091474
  2. Fink, J., Kushch, S., Williams, P., & Bourne, P. (2008). BioLit: integrating biological literature with databases Nucleic Acids Research, 36 (Web Server) DOI: 10.1093/nar/gkn317
  3. Shotton, D., Portwin, K., Klyne, G., & Miles, A. (2009). Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article PLoS Computational Biology, 5 (4) DOI: 10.1371/journal.pcbi.1000361
  4. Pafilis, E., O’Donoghue, S., Jensen, L., Horn, H., Kuhn, M., Brown, N., & Schneider, R. (2009). Reflect: augmented browsing for the life scientist Nature Biotechnology, 27 (6), 508-510 DOI: 10.1038/nbt0609-508
  5. Pettifer, S., Thorne, D., McDermott, P., Marsh, J., Villéger, A., Kell, D., & Attwood, T. (2009). Visualising biological data: a semantic approach to tool and database integration BMC Bioinformatics, 10 (Suppl 6) DOI: 10.1186/1471-2105-10-S6-S19

September 18, 2009

Popular, personal and public data: Article-level metrics at PLoS

PLoS: The Public Library of ScienceThe Public Library of Science (PLoS) is a non-profit organisation committed to making the world’s scientific and medical literature freely accessible to everyone via open access publishing. As recently announced they have just published the first article-level metrics (e.g. web server logs and related information) for all articles in their library. This is novel, interesting and potentially useful data, not currently made publicly available by other publishers. Here is a  selection of some of the data, taken from the full dataset here (large file), which includes the “top ten” papers by viewing statistics.

Article level metrics for some papers published in PLoS (August 2009)

Rank* Article Journal Views Citations**
1 Why Most Published Research Findings Are False (including this one?) [1] PLoS Medicine 232847 52
2 Initial Severity and Antidepressant Benefits: A Meta-Analysis of Data Submitted to the Food and Drug Administration [2] PLoS Medicine 182305 15
3 Serotonin and Depression: A Disconnect between the Advertisements and the Scientific Literature [3] PLoS Medicine 105498 16
4 The Diploid Genome Sequence of an Individual Human [4] PLoS Biology 88271 54
5 Ultrasonic Songs of Male Mice [5] PLoS Biology 81331 8
6 Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology [6] PLoS ONE 62449 0
7 The Impact Factor Game: It is time to find a better way to assess the scientific literature [7] PLoS Medicine 61353 13
8 A Map of Recent Positive Selection in the Human Genome [8] PLoS Biology 59512 94
9 Mapping the Structural Core of Human Cerebral Cortex [9] PLoS Biology 58151 8
10 Ten Simple Rules for Getting Published [10] PLoS Computational Biology 57312 1
11 Men, Women, and Ghosts in Science [11] PLoS Biology 56982 0
120 Defrosting the Digital Library: Bibliographic Tools for the Next Generation Web [12] (w00t!) PLoS Computational Biology 16295 3
1500 Specificity and evolvability in eukaryotic protein interaction networks [13] PLoS Computational Biology 4270 7
1632 Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions [14] PLoS Computational Biology 4063 10
1755 Folding Very Short Peptides Using Molecular Dynamics [15] PLoS Computational Biology 3876 2
2535 Microblogging the ISMB: A New Approach to Conference Reporting [16] PLoS Computational Biology 3055 1
7521 Probing the Flexibility of Large Conformational Changes in Protein Structures through Local Perturbations [17] PLoS Computational Biology 1024 0
12549 Deciphering Proteomic Signatures of Early Diapause in Nasonia [18] PLoS ONE 0 0

*The rank is based on the 12,549 papers for which viewing data (combined usage of HTML + PDF + XML) are available.

**Citation counts are via PubMedCentral (data from CrossRef and Scopus is also provided, see Bora’s comments and commentary at Blue Lab Coats.)

Science is not a popularity contest but…

Analysing this data is not straightforward. Some highly-viewed articles are never cited (reviews, editorial, essays, opinion, etc). Likewise, popularity and importance are not the same thing. Some articles get lots of citations but few views, which suggests that people are not actually reading the papers them before citing them. As described on the PLoS website article-level-metrics.plos.org:

“When looking at Article-Level Metrics for the first time bear the following points in mind:

  • Online usage is dependent on the article type, the age of the article, and the subject area(s) it is in. Therefore you should be aware of these effects when considering the performance of any given article.
  • Older articles normally have higher usage than younger ones simply because the usage has had longer to accumulate. Articles typically have a peak in their usage in the first 3 months and usage then levels off after that.
  • Spikes of usage can be caused by media coverage, usage by large numbers of people, out of control download scripts or any number of other reasons. Without a detailed look at the raw usage logs it is often impossible to tell what the reason is and so we encourage you to regard usage data as indicative of trends, rather than as an absolute measure for any given article.
  • We currently have missing usage data for some of our articles, but we are working to fill the gaps. Primarily this affects those articles published before June 17th, 2005.
  • Newly published articles do not accumulate usage data instantaneously but require a day or two before data are shown.
  • Article citations as recorded by the Scopus database are sometimes undercounted because there are two records in the database for the same article. We’re working with Scopus to correct this issue.
  • All metrics will accrue over time (and some, such as citations, will take several years to accrue). Therefore, recent articles may not show many metrics (other than online usage, which accrues from day one). ”

So all the usual caveats apply when using this bibliometric data. Despite the limitations, it is more revealing than the useful (but simplistic) “highly accesssed” papers at BioMedCentral, which doesn’t always give full information on what “highly” actually means next to each published article. It will be interesting to see if other publishers now follow the lead of PLoS and BioMed Central and also publish their usage data combined with other bibliometric indicators such as blog coverage. For authors publishing with PLoS, this data has an added personal dimension too, it is handy to see how many views your paper has.

As paying customers of the services that commercial publishers provide, should scientists and their funders be demanding more of this kind of information in the future? I reckon they should. You have to wonder, why these kind of innovations have taken so long to happen, but they are a welcome addition.

[More commentary on this post over at friendfeed.]

References

  1. Ioannidis, J. (2005). Why Most Published Research Findings Are False PLoS Medicine, 2 (8) DOI: 10.1371/journal.pmed.0020124
  2. Kirsch, I., Deacon, B., Huedo-Medina, T., Scoboria, A., Moore, T., & Johnson, B. (2008). Initial Severity and Antidepressant Benefits: A Meta-Analysis of Data Submitted to the Food and Drug Administration PLoS Medicine, 5 (2) DOI: 10.1371/journal.pmed.0050045
  3. Lacasse, J., & Leo, J. (2005). Serotonin and Depression: A Disconnect between the Advertisements and the Scientific Literature PLoS Medicine, 2 (12) DOI: 10.1371/journal.pmed.0020392
  4. Levy, S., Sutton, G., Ng, P., Feuk, L., Halpern, A., Walenz, B., Axelrod, N., Huang, J., Kirkness, E., Denisov, G., Lin, Y., MacDonald, J., Pang, A., Shago, M., Stockwell, T., Tsiamouri, A., Bafna, V., Bansal, V., Kravitz, S., Busam, D., Beeson, K., McIntosh, T., Remington, K., Abril, J., Gill, J., Borman, J., Rogers, Y., Frazier, M., Scherer, S., Strausberg, R., & Venter, J. (2007). The Diploid Genome Sequence of an Individual Human PLoS Biology, 5 (10) DOI: 10.1371/journal.pbio.0050254
  5. Holy, T., & Guo, Z. (2005). Ultrasonic Songs of Male Mice PLoS Biology, 3 (12) DOI: 10.1371/journal.pbio.0030386
  6. Franzen, J., Gingerich, P., Habersetzer, J., Hurum, J., von Koenigswald, W., & Smith, B. (2009). Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology PLoS ONE, 4 (5) DOI: 10.1371/journal.pone.0005723
  7. The PLoS Medicine Editors (2006). The Impact Factor Game PLoS Medicine, 3 (6) DOI: 10.1371/journal.pmed.0030291
  8. Voight, B., Kudaravalli, S., Wen, X., & Pritchard, J. (2006). A Map of Recent Positive Selection in the Human Genome PLoS Biology, 4 (3) DOI: 10.1371/journal.pbio.0040072
  9. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C., Wedeen, V., & Sporns, O. (2008). Mapping the Structural Core of Human Cerebral Cortex PLoS Biology, 6 (7) DOI: 10.1371/journal.pbio.0060159
  10. Bourne, P. (2005). Ten Simple Rules for Getting Published PLoS Computational Biology, 1 (5) DOI: 10.1371/journal.pcbi.0010057
  11. Lawrence, P. (2006). Men, Women, and Ghosts in Science PLoS Biology, 4 (1) DOI: 10.1371/journal.pbio.0040019
  12. Hull, D., Pettifer, S., & Kell, D. (2008). Defrosting the Digital Library: Bibliographic Tools for the Next Generation Web PLoS Computational Biology, 4 (10) DOI: 10.1371/journal.pcbi.1000204
  13. Beltrao, P., & Serrano, L. (2007). Specificity and Evolvability in Eukaryotic Protein Interaction Networks PLoS Computational Biology, 3 (2) DOI: 10.1371/journal.pcbi.0030025
  14. Beltrao, P., & Serrano, L. (2005). Comparative Genomics and Disorder Prediction Identify Biologically Relevant SH3 Protein Interactions PLoS Computational Biology, 1 (3) DOI: 10.1371/journal.pcbi.0010026
  15. Ho, B., & Dill, K. (2006). Folding Very Short Peptides Using Molecular Dynamics PLoS Computational Biology, 2 (4) DOI: 10.1371/journal.pcbi.0020027
  16. Saunders, N., Beltrão, P., Jensen, L., Jurczak, D., Krause, R., Kuhn, M., & Wu, S. (2009). Microblogging the ISMB: A New Approach to Conference Reporting PLoS Computational Biology, 5 (1) DOI: 10.1371/journal.pcbi.1000263
  17. Ho, B., & Agard, D. (2009). Probing the Flexibility of Large Conformational Changes in Protein Structures through Local Perturbations PLoS Computational Biology, 5 (4) DOI: 10.1371/journal.pcbi.1000343
  18. Wolschin, F., & Gadau, J. (2009). Deciphering Proteomic Signatures of Early Diapause in Nasonia PLoS ONE, 4 (7) DOI: 10.1371/journal.pone.0006394

September 10, 2009

September 4, 2009

XML training in Oxford

XML Summer School 2009The XML Summer School returns this year at St. Edmund Hall, Oxford from 20th-25th September 2009. As always, it’s packed with high quality technical training for every level of expertise, from the Hands-on Introduction for beginners through to special classes devoted to XQuery and XSLT, Semantic Technologies, Open Source Applications, Web 2.0, Web Services and Identity. The Summer School is also a rare opportunity to experience what life is like as a student in one of the world’s oldest university cities while enjoying a range of social events that are a part of the unique summer school experience.

This year, classes and sessions are taught and chaired by:

W3C XML 10th anniversaryThe Extensible Markup Language (XML) has been around for just over ten years, quickly and quietly finding its niche in many different areas of science and technology. It has been used in everything from modelling biochemical networks in systems biology [1], to electronic health records [2], scientific publishing, the provision of the PubMed service (which talks XML) [3] and many other areas. As a crude measure of its importance in biomedical science, PubMed currently has no fewer than 800 peer-reviewed publications on XML. It’s hard to imagine life without it. So whether you’re a complete novice looking to learn more about XML or a seasoned veteran wanting to improve your knowledge, register your place and find out more by visiting xmlsummerschool.com. I hope to see you there…

References

  1. Hucka, M. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models Bioinformatics, 19 (4), 524-531 DOI: 10.1093/bioinformatics/btg015
  2. Bunduchi R, Williams R, Graham I, & Smart A (2006). XML-based clinical data standardisation in the National Health Service Scotland. Informatics in primary care, 14 (4) PMID: 17504574
  3. Sayers, E., Barrett, T., Benson, D., Bryant, S., Canese, K., Chetvernin, V., Church, D., DiCuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D., Madden, T., Maglott, D., Miller, V., Mizrachi, I., Ostell, J., Pruitt, K., Schuler, G., Sequeira, E., Sherry, S., Shumway, M., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusova, T., Wagner, L., Yaschenko, E., & Ye, J. (2009). Database resources of the National Center for Biotechnology Information Nucleic Acids Research, 37 (Database) DOI: 10.1093/nar/gkn741

July 24, 2009

Escape from the impact factor: The Great Escape?

The Great Escape with Steve McQueenQuite by chance, I stumbled on this interesting paper [1] yesterday by Philip Campbell who is the Editor-in-Chief of the scientific über-journal Nature [2]. Here is the abstract:

As Editor-in-Chief of the journal Nature, I am concerned by the tendency within academic administrations to focus on a journal’s impact factor when judging the worth of scientific contributions by researchers, affecting promotions, recruitment and, in some countries, financial bonuses for each paper. Our own internal research demonstrates how a high journal impact factor can be the skewed result of many citations of a few papers rather than the average level of the majority, reducing its value as an objective measure of an individual paper. Proposed alternative indices have their own drawbacks. Many researchers say that their important work has been published in low-impact journals. Focusing on the citations of individual papers is a more reliable indicator of an individual’s impact. A positive development is the increasing ability to track the contributions of individuals by means of author-contribution statements and perhaps, in the future, citability of components of papers rather than the whole. There are attempts to escape the hierarchy of high-impact-factor journals by means of undifferentiated databases of peer-reviewed papers such as PLoS One. It remains to be seen whether that model will help outstanding work to rise to due recognition regardless of editorial selectivity. Although the current system may be effective at measuring merit on national and institutional scales, the most effective and fair analysis of a person’s contribution derives from a direct assessment of individual papers, regardless of where they were published.

It’s well worth reading the views of the editor of an important closed-access journal like Nature, a world champion heavyweight of Impact Factor Boxing. So their view on article-level bibliometrics and novel models of scientific publishing on the Web like PLoS ONE is enlightening. There are some interesting papers in the same issue, which has a special theme on the use and misuse of bibliometric indices in evaluating scholarly performance. Oh, and the article is published in an Open Access Journal too. Is it just me, or is there a strong smell of irony in here?

References

  1. Philip Campbell (2008). Escape from the impact factor Ethics in Science and Environmental Politics, 8, 5-7 DOI: 10.3354/esep00078
  2. Philip Campbell (1995). Postscript from a new hand Nature, 378 (6558), 649-649 DOI: 10.1038/378649b0
  3. John Sturges (1963) The Great Escape

June 23, 2009

Impact Factor Boxing 2009

Fight Night Punch Test by djclear904[This post is part of an ongoing series about impact factors]

The latest results from the annual impact factor boxing world championship contest are out. This is a combat sport where scientific journals are scored according to their supposed influence and impact in Science. This years competition rankings include the first-ever update to the newly introduced Five Year Impact Factor and Eigenfactor™ Metrics [1,2] in Journal Citation Reports (JCR) on the Web (see www.isiknowledge.com/JCR warning: clunky website requires subscription*), presumably in response to widespread criticism of impact factors. The Eigenfactor™ seems to correlate quite closely with the impact factor scores, both of which work at the level of the journal, although they use different methods for measuring a given journals impact. However, what many authors are often more interested in is the impact of an individual article, not the journal where it was published. So it would be interesting to see how the figures below tally with Google Scholar, see also comments by Abhishek Tiwari. I’ve included a table below of bioinformatics impact factors, updated for June 2009. Of course, when I say 2009 (today), I mean 2008 (these are the latest figures available based on data from 2007) – so this shiny new information published this week is already out of date [3] and flawed [4,5] but here is a selection of the data anyway: [update: see figures published in June 2010.]

Journal Title 2008 data from isiknowledge.com/JCR Eigenfactor™ Metrics
Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Articles Cited Half-life Eigenfactor™ Score Article Influence™ Score
BMC Bionformatics 8141 3.781 4.246 0.664 607 2.8 0.06649 1.730
OUP Bioinformatics 30344 4.328 6.481 0.566 643 4.8 0.18204 2.593
Briefings in Bioinformatics 2908 4.627 1.273 44 4.5 0.02188
PLoS Computational Biology 2730 5.895 6.144 0.826 253 2.1 0.03063 3.370
Genome Biology 9875 6.153 7.812 0.961 229 4.4 0.07930 3.858
Nucleic Acids Research 86787 6.878 6.968 1.635 1070 6.5 0.37108 2.963
PNAS 416018 9.380 10.228 1.635 3508 7.4 1.69893 4.847
Science 409290 28.103 30.268 6.261 862 8.4 1.58344 16.283
Nature 443967 31.434 31.210 8.194 899 8.5 1.76407 17.278

The internet is radically changing the way we communicate and this includes scientific publishing, as media mogul Rupert Murdoch once pointed out big will not beat small any more – it will be the fast beating the slow.  An interesting question for publishers and scientists is, how can the Web help the faster flyweight and featherweight boxers (smaller journals) compete and punch-above-their-weight with the reigning world champion heavyweights (Nature, Science and PNAS)? Will the heavyweight publishers always have the killer knockout punches? If you’ve got access to the internet, then you already have a ringside seat from which to watch all the action. This fight should be entertaining viewing and there is an awful lot of money riding on the outcome [6-11].

Seconds away, round two…

References

  1. Fersht, A. (2009). The most influential journals: Impact Factor and Eigenfactor Proceedings of the National Academy of Sciences, 106 (17), 6883-6884 DOI: 10.1073/pnas.0903307106
  2. Bergstrom, C., & West, J. (2008). Assessing citations with the Eigenfactor Metrics Neurology, 71 (23), 1850-1851 DOI: 10.1212/01.wnl.0000338904.37585.66
  3. Cockerill, M. (2004). Delayed impact: ISI’s citation tracking choices are keeping scientists in the dark. BMC Bioinformatics, 5 (1) DOI: 10.1186/1471-2105-5-93
  4. Allen, L., Jones, C., Dolby, K., Lynn, D., & Walport, M. (2009). Looking for Landmarks: The Role of Expert Review and Bibliometric Analysis in Evaluating Scientific Publication Outputs PLoS ONE, 4 (6) DOI: 10.1371/journal.pone.0005910
  5. Grant, R.P. (2009) On article-level metrics and other animals Nature Network
  6. Corbyn, Z. (2009) Do academic journals pose a threat to the advancement of Science? Times Higher Education
  7. Fenner, M. (2009) PLoS ONE: Interview with Peter Binfield Gobbledygook blog at Nature Network
  8. Hoyt, J. (2009) Who is killing science on the Web? Publishers or Scientists? Mendeley Blog
  9. Hull, D. (2009) Escape from the Impact Factor: The Great Escape? O’Really? blog
  10. Murray-Rust, P. (2009) THE article: Do academic journals pose a threat to the advancement of science? Peter Murray-Rust’s blog: A Scientist and the Web
  11. Wu, S. (2009) The evolution of Scientific Impact shirleywho.wordpress.com

* This important data should be freely available (e.g. no subscription), since crucial decisions about the allocation of public money depend on it, but that’s another story.

[More commentary on this post over at friendfeed. CC-licensed Fight Night Punch Test by djclear904]

June 2, 2009

Michael Ley on Digital Bibliographies

Michael Ley

Michael Ley is visiting Manchester this week, he will be doing a seminar on Wednesday 3rd June, here are some details for anyone who is interested in attending:

Date: 3rd Jun 2009

Title: DBLP: How the data get in

Speaker: Dr Michael Ley. University of Trier, Germany

Time & Location: 14:15, Lecture Theatre 1.4, Kilburn Building

Abstract: The DBLP (Digital Bibliography & Library Project) Computer Science Bibliography now includes more than 1.2 million bibliographic records. For Computer Science researchers the DBLP web site now is a popular tool to trace the work of colleagues and to retrieve bibliographic details when composing the lists of references for new papers. Ranking and profiling of persons, institutions, journals, or conferences is another usage of DBLP. Many scientists are aware of this and want their publications being listed as complete as possible.

The talk focuses on the data acquisition workflow for DBLP. To get ‘clean’ basic bibliographic information for scientific publications remains a chaotic puzzle.

Large publishers are either not interested to cooperate with open services like DBLP, or their policy is very inconsistent. In most cases they are not able or not willing to deliver basic data required for DBLP in a direct way, but they encourage us to crawl their Web sites. This indirection has two main problems:

  1. The organisation and appearance of Web sites changes from time to time, this forces a reimplementation of information extraction scripts. [1]
  2. In many cases manual steps are necessary to get ‘complete’ bibliographic information.

For many small information sources it is not worthwhile to develop information extraction scripts. Data acquisition is done manually. There is an amazing variety of small but interesting journals, conferences and workshops in Computer Science which are not under the umbrella of ACM, IEEE, Springer, Elsevier etc. How they get it often is decided very pragmatically.

The goal of the talk and my visit to Manchester is to start a discussion process: The EasyChair conference management system developed by Andrei Voronkov and DBLP are parts of scientific publication workflow. They should be connected for mutual benefit?

References

  1. Lincoln Stein (2002). Creating a bioinformatics nation: screen scraping is torture Nature, 417 (6885), 119-120 DOI: 10.1038/417119a

February 11, 2009

Janet Street-Porter on the Internet Revolution

Janet Street-PortableI’m not much of a fan of Janet Street-Porter, neither am I a regular viewer of the BBC Money programme but right now they are screening an interesting series of three half-hour programmes on the impact of the internet on newspapers, books and television. It’s a familiar tale of the power-and-money struggle between old media and new media that, if the first programme is anything to go by, is worth watching. Here is the blurb from the first episode in the series, billed as Media Revolution: Stop Press?

Former national newspaper editor Janet Street-Porter investigates how papers are coping with falling circulation, advertising revenues and the growth of the internet, and asks if newspapers can survive in their current form. In her quest to discover what the future holds for her beloved newspapers, Janet visits newsrooms, printing plants and even spends a morning as a papergirl. With contributions from national editors, advertising gurus and a rare interview with media mogul Rupert Murdoch, Janet examines if papers can survive as new multimedia information giants.

There are some interesting parallels between the changes described in this programme, and scientific media, especially the scientific journal publishing racket.

Scientific Media Revolution?

The story of the current revolution in scientific and technical publishing is perhaps just as interesting (and more important) than the one being told on the money programme. Just think of it, why scientists publish, the emergence of peer review, how Robert Maxwell made his fortune from the Pergamon Press, the impact factor game, the birth of the Web (in a scientific laboratory), the growth of Google, the copyright wars, open-access publishing, social software, the rise and fall of publishing empires (and technology companies), the vanity journals, scientific blogs and wikis, software showdowns, how all this change affects producers and consumers of science and technology, both now and in the future. A juicy subject, worthy of broadcasting on any media (old or new). You would need a lot more than three half-hour programmes to cover this particular ongoing epic, so who is going to tell that story?

Anyway, the series is worth a look (if you haven’t already seen it) at least according to me  (others disagree see also no paper is the future). It is also available on iPlayer for up to a week after first broadcast – Thursday 5th, 12th and 19th February 2008 – for each episode in the UK only, unless you go through some kind of proxy.

October 24, 2008

PNAS envy?

Filed under: publishing — Duncan Hull @ 6:02 am
Tags: , , , , , , ,

Lincoln with Stars & Stripes by tanakawhoThe United States National Academy of Sciences (NAS) is an “honorific society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare”. Set up by none other than Abraham Lincoln himself, the academy publishes a prestigious scientific journal, called the Proceedings of the National Academy of Sciences, better known as just “PNAS” and available at www.pnas.org. This publication is  part of a supposedly elite club of high-profile journals – Nature, Science and PNAS (NSPNAS) – that many scientists from all around the world, strive to publish in. Now, there are those that think the world would be a better place if we concentrated on what scientists have to say, rather than where they say it. But currently, life doesn’t always work that way. Better journals, usually tend to have better reviewers and these are often the most important places to publish results. (more…)

« Previous PageNext Page »

Blog at WordPress.com.