January 27, 2020

Seven things to do at CERN if you’re not a Physicist


Wandering the Immeasurable: A sculpture at CERN by Gayle Hermick, picture re-used with permission from the artist

Even if you’re not a Physicist, there is plenty to see and do above and below ground at the European Organization for Nuclear Research (CERN). Home to the worlds largest experiment on what is arguably the worlds largest machine near Geneva in Switzerland, CERN is a very inspiring place to visit. Consequently, CERN and the Large Hadron Collider (LHC) feature in many guidebooks like The Geek Atlas [1], the Atlas Obscura, Lonely Planet and Tripadvisor.com. So what can you actually see and do at CERN?

  1. Get a well paid engineering job. Good news for engineers, there are loads of jobs at CERN. What better way to explore a place than to work there? If you’re a student see careers.cern/students for details on summer internships and year long technical student programs. If you have already graduated, take a look at the CERN Fellowships and the doctoral student program. There are also plenty of opportunities for more experienced engineers described at careers.cern/professionals too. CERN’s mission is to “unite people from all over the world to push the frontiers of science and technology, for the benefit of all”. Part of that means providing opportunities for people from CERN’s 23 member states to learn new skills at CERN and take them back to their home country. For every research physicist at CERN, there are ten engineers. [2] To run their experiments, physicists rely on massive, novel and a very precise network of machines made with millions of parts, both moving and stationary. You need an army of engineers to build, test, run and develop such a complex machine, for example:
    • Mechanical engineers develop heating & cooling systems and mechatronics (there are quite a few robots at CERN)
    • Materials engineers test novel materials, metals, magnets, microscopes, superconductors, vacuums, X-ray diffraction and apply radiochemistry
    • Software and hardware engineers develop applications, virtualised infrastructure, distributed computing and databases using a wide range of programming and scripting languages. These applications manage data in one of the most highly demanding computing environments in the research world
    • Electrical and electronic engineers work on energy distribution, signal processing, microelectronics and radio frequency technology
    • Civil engineers and geotechnical engineers develop structures, roads, drainage, both above (and under) ground to accommodate all of the above
    • There are non-engineering jobs too, in administration careers.cern/AdminStudent-projects and Applied Physics (obviously)

So CERN is full of engineers of every flavour. But if you’re not a physicist or an engineer looking for a job, there is still plenty to see and do. So let’s reboot our listicle again: seven things to do at CERN if you’re not a physicist, an engineer or job seeker:

  1. Watch cosmic rays arrive from outer space: There are two permanent exhibitions which can be visited without booking and they both have free entry. One is housed in the aesthetically pleasing Globe of Science and Innovation (GoSI) and is called the Universe of Particles. Another is opposite the GoSI and called Microcosm. There’s plenty to see in both exhibits, including film projections, spark chambers showing cosmic rays and cloud chambers which allow you to visualise ionizing radiation.
  2. Wander the Immeasurable with Gayle Hermick: Right outside the GoSI, sits an impressive sculpture made of 15 tonnes of twisted steel, stretched out over 37 metres in length and 11 metres up into the air. Covered in mathematical equations describing physical laws, the sculpture tells the story of Physics from Mesopotamia and Ancient Greece up to present day Higgs Boson and beyond. It’s a beautiful work of art to contemplate by Gayle Hermick. Having been inspired by equations the next thing you need to do is…
  3. Crunch numbers using Einsteins famous equation: You can’t visit CERN without crunching some numbers. Many people will be familiar with Einsteins famous equation of mass–energy equivalence E=mc². What this means is that energy can be converted into mass (and vice versa) and the “exchange rate” () is a very large number – the speed of light squared. So, you can turn a small about of mass into a HUGE amount of energy. Armed with your handy mass–energy calculator, you can crunch numbers, for example 1 kg = 90,000,000,000,000,000 Joules.
  4. Thank the technology mothership: CERN is widely known as the the birthplace the Web, which we should all be thankful for. Many other technologies can trace their origin to CERN. Bent Stumpe and his colleagues developed the first touchscreens as early as 1973. [3,4] Cloud computing platforms such as Amazon Web Services, Google Cloud, Microsoft Azure have some of their roots in Grid Computing developed at CERN too. [5] Key pieces of widely used open-source software like Ceph and OpenStack have been co-developed at CERN. Where would we be without massive international collaborations? Find out more about how investment creates a positive impact on society through knowledge transfer, spin outs, startups and more at kt.cern. Many of these projects have an impact far beyond physics in areas such as medicine and consumer electronics. Thank you technology mothership. 🙏
  5. Boggle at Big Data: Data speaks louder than words. Here is some random data for your mind to boggle on:
    • When switched on, some of the LHC detectors track up to 40 million events per second.
    • The LHC Grid computing generates 30 petabytes (10¹⁵ bytes) per year, with 300 petabytes of data permanently archived in its tape libraries as of October 2018.
    • The big loop underground is 27km long. Travelling very fast, close to the speed of light, a proton laps the circuit 11,000 times every second.
    • There are 100,000 scientists from over 100 countries working at CERN
    • More boggling can be done in the CERN data centre, especially the key facts and figures. [6] Anyone can explore and play with over two petabytes of Physics data at opendata.cern.ch
  6. Contribute to the Grid: Talking of data, Physicists from all over the world work on data produced by the experiments. This requires supercomputers, very High Performance Computing (HPC) and Grid computing that no single machine can provide. This is why the Worldwide LHC Computing Grid (WLCG) exists. With the improvements of the LHC more and more computing power is required to crunch the data. Anyone can contribute by joining in the LHC@home project. Who knows? Maybe you can be a part of the discovery of the new mysterious particle or the proof that physicists have been struggling with for decades. CERN’s Grid builds on volunteered resources provided via the Berkeley Open Infrastructure for Network Computing (BOINC) middleware.
  7. Book a free tour: While the two free permanent exhibitions require no booking, the free tours do and they offer much more. Tours are typically given by knowledgeable and enthusiastic staff. You can learn a lot from the permanent exhibitions, but a tour guide brings the place to life. Tours fill up quickly and provide access to restricted parts of CERN such as mission control, the ATLAS experiment, CMS cavern, synchro-cyclotron, the CERN data centre and more. [6] The cyclotron tells the story of CERN from 1957, when the first particle accelerator arrived in pieces on the back of a few lorries. Today it spans 27 km of France and Switzerland. How did that happen? Using lights and projectors, the exhibition brings the story to life in an illuminating way. At the time of writing, limited underground visits are possible as we are in the middle of the long shutdown 2 [7]. Tunnels are accessible but you’ll need to book a tour.

If you ever get the chance to visit.cern, it is well worth it. There is nowhere else quite like it. CERN is a truly inspiring place that demonstrates what can be achieved when thousands of people collaborate on a shared vision.


I’d like to thank current and former CERN technical students from the University of Manchester for their tours (both virtual and actual) of CERN and comments on drafts of this article: Raluca Cruceru, Simeon Tsvetankov, Iuliana Voinea, Grzegorz Jacenków, Boris Vasilev, Ciprian Tomoiagă, Nicole Morgan, Paul-Adrian Gafton, Joshua Dawes and Stefan Klikovits. Did I miss anything? Let me know in the comments or by email.

Thanks to Gayle Hermick for her permission to re-use the picture of her artwork in this piece.

DISCLAIMER: You can probably tell from reading the above that I am not a Physicist, unless you count a very rusty A-level from decades ago. Any factual errors in this article are the combined fault of me and my Physics teacher!


    1. John Graham-Cumming (2009) The Geek Atlas: 128 places where Science & Technology come alive O’Reilly Media, Inc. ISBN: 9780596802257
    2. Did you know, CERN employs ten times more engineers and technicians than research physicists? home.cern/science/engineering Deadlines for applications are typically, end of January for summer internships and September and March for technical studentships, check careers.cern for details.
    3. Bent Stumpe and Christine Sutton (2010) The first capacitative touch screens at CERN: The story of a forerunner to today’s mobile-phone screens, cerncourier.com
    4. Bent Stumpe (2014) The ‘Touch Screen’ Revolution: 103–116. DOI: 10.1002/9783527687039.ch05 Chapter 5 of From Physics to Daily Life by Beatrice Bressan Wiley‐VCH Verlag GmbH & Co ISBN: 9783527332861
    5. Maria Alandes Pradillo and Andrzej Nowak (2013) The Grid, CERN’s Global Supercomputer Computerphile
    6. Mélissa Gaillard (2019) Key Facts and Figures – CERN Data Centre information-technology.web.cern.ch
    7. Evan Gough (2018) The Large Hadron Collider has been Shut Down, and Will Stay Down for Two Years While they Perform Major Upgrades universetoday.com


April 1, 2014

The Serene Scientists Serenity Prayer via Jon Butterworth

banksy church

The Church of Banksy

Whatever your religous preferences, the Serenity Prayer by Reinhold Niebuhr captures a certain wisdom about life in general. So it is good to see that physicist Jon Butterworth at UCL has adapted it [1] for scientists:

“Give me grace to accept with serenity the things that cannot be understood,

Data to investigate the things which can be understood,

And the Wisdom to know the difference.”



  1. Jon Butterworth (2014) Giles Fraser says scientists are replacing theologians. Some thoughts on that The Gruaniad, 2014-03-31

February 18, 2013

August 20, 2012

Digital Research 2012: September 10th-12th at St. Catherine’s College, Oxford, UK

The Radcliffe Camera, Oxford by chensiyuan

The Radcliffe Camera, Oxford by chensiyuan via wikipedia

The UK’s premier Digital Research community event is being held in Oxford 10-12 September 2012. Come along to showcase and share the latest in digital research practice – and set the agenda for tomorrow at Digital Research 2012. The conference features an exciting 3-day programme with a great set of invited speakers together with showcases of the work and vision of the Digital Research community. Here are some highlights of the programme – please see the website digital-research.oerc.ox.ac.uk for the full programme and registration information.

New Science of New Data Symposium and Innovation Showcase  on Monday 10th: Keynotes from Noshir Contractor [1] (Northwestern University) on Web Science, Nigel Shadbolt (Government Information Adviser) on Open Data and a closing address by Kieron O’Hara (computer scientist) – with twitter analytics, geolocated social media and web observatories in between. Also the launch of the Software Sustainability Institute’s Fellows programme and community workshops.

Future of Digital Research on Tuesday 11th: Keynotes from Stevan Harnad on “Digital Research: How and Why the Research Councils UK Open Access Policy Needs to Be Revised” [2], Jim Hendler (Rensselaer Polytechnic Institute) on “Broad Data” (not just big!), and Lizbeth Goodman (University College Dublin) on “SMART spaces by and for SMART people”. Sessions are themed on Open Science with a talk by Peter Murray-Rust, Smart Spaces as a Utility and future glimpses from the community, all culminating in a Roundtable discussion on the Future of Digital Research.

e–Infrastructure Forum and Innovation Showcase on Wednesday 12th opens with a dual-track community innovation showcase, then launch the UK e-Infrastructure Academic Community Forum where Peter Coveney (UK e-Infrastructure Leadership Council and University College London) will present the “state of the nation” followed by a Provider’s Panel, Software, Training and User’s Panel – an important and timely opportunity for the community to review current progress and determine what’s needed in the future.

There’s a lot more happening throughout the event, including an exciting “DevChallenge” hackathon run by DevCSI, software surgery by the Software Sustainability Institute (SSI) and multiple community workshops – plus the Digital Research 2012 dinner in College and a reception in the spectacular Museum of Natural History in Oxford. Digital Research 2012 is very grateful to everyone who has come together to make this event possible, including e-Research South, Open Knowledge Foundation, Web Science, the Digital Social Research programme, our Digital Economy colleagues and the All Hands Foundation.

We look forward to seeing you at Digital Research 2012 in Oxford in September.


  1. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M. & (2009). Social Science: Computational Social Science, Science, 323 (5915) 723. DOI: 10.1126/science.1167742
  2. Stevan Harnad (2012). Open access: A green light for archiving, Nature, 487 (7407) 302. DOI: 10.1038/487302b

August 3, 2012

May 6, 2009

Michel Dumontier on Representing Biochemistry

Michel Dumontier by Tom HeathMichel Dumontier is visiting Manchester this week, he will be doing a seminar on Monday 11th of May,  here are some details for anyone who is interested in attending:

Title: Increasingly Accurate Representation of Biochemistry

Speaker: Michel Dumontier, dumontierlab.com

Time: 14.00, Monday 11th May 2009
Venue: Atlas 1, Kilburn Building, University of Manchester, number 39 on the Google Campus Map

Abstract: Biochemical ontologies aim to capture and represent biochemical entities and the relations that exist between them in an accurate manner. A fundamental starting point is biochemical identity, but our current approach for generating identifiers is haphazard and consequently integrating data is error-prone. I will discuss plausible structure-based strategies for biochemical identity whether it be at molecular level or some part thereof (e.g. residues, collection of residues, atoms, collection of atoms, functional groups) such that identifiers may be generated in an automatic and curator/database independent manner. With structure-based identifiers in hand, we will be in a position to more accurately capture context-specific biochemical knowledge, such as how a set of residues in a binding site are involved in a chemical reaction including the fact that a key nitrogen atom must first be de-protonated. Thus, our current representation of biochemical knowledge may improve such that manual and automatic methods of biocuration are substantially more accurate.

Update: Slides are now available via SlideShare.

[Creative Commons licensed picture of Michel in action at ISWC 2008 from Tom Heath]


  1. Michel Dumontier and Natalia Villanueva-Rosales (2009) Towards pharmacogenomics knowledge discovery with the semantic web Briefings in Bioinformatics DOI:10.1093/bib/bbn056
  2. Doug Howe et al (2008) Big data: The future of biocuration Nature 455, 47-50 doi:10.1038/455047a

Blog at WordPress.com.