O'Really?

July 30, 2021

Join us to discuss when study turns digital on Monday 2nd August at 2pm BST

Public domain image of Coronavirus by Alissa Eckert and Dan Higgins at CDC.gov on Wikimedia commons w.wiki/ycs

The pandemic has accelerated changes to the way we teach and learn. Join us to discuss the Covid-19 shutdown: when studying turns digital, students want more structure: a paper by Vegard Gjerde, Robert Gray, Bodil Holst and Stein Dankert Kolstø on the effects of the pandemic on Physics Education at a Norwegian University. [1]

In March 2020, universities in Norway and many other countries shut down due to the Covid-19 pandemic. The students lost access to classrooms, libraries, study halls, and laboratories. Studying turned digital. Because it is unclear when this pandemic will cease to affect students and because we cannot know whether or when a new pandemic occurs, we need to find ways to improve digital study-life for students. An important step in this direction is to understand the students’ experiences and perspectives regarding how the digitalization affected their study-life both in structured learning arenas and their self-study. Therefore, we interviewed 12 students in an introductory mechanics course at a Norwegian university in June of 2020. Through a thematic analysis, we identified four broad categories in the students’ different experiences and reflections, namely that digitalization: (a) provides benefits, e.g. the flexibility inherent in online video lectures; (b) incurs learning costs, e.g. students reducing their study effort; (c) incurs social costs, e.g. missing being around other students; and (d) increases the need for structure, e.g. wanting to be arranged in digital groups to solve mandatory tasks. We also found that the 2019 students on average scored significantly better on the final exam than the 2020 students, d = 0.31, but we discuss why this result should be interpreted with caution. We provide suggestions for how to adapt courses to make students’ digital studying more socially stimulating and effective. Furthermore, this study is a contribution to the historical documentation of the Covid-19 pandemic.

All welcome, as usual, we’ll be meeting on Zoom see sigcse.cs.manchester.ac.uk/join-us for details. Thanks to Sarah Clinch for suggesting the paper.

References

  1. Gjerde, Vegard; Gray, Robert; Holst, Bodil; Kolstø, Stein Dankert (2021). “The Covid-19 shutdown: when studying turns digital, students want more structure”. Physics Education56 (5): 055004. doi:10.1088/1361-6552/ac031e

March 4, 2020

Join us to discuss student misconceptions in programming, March 23rd from 1pm to 2pm

smallerscream

The Scream by Edvard Munch 😱, reproduced in LEGO by Nathan Sawaya, the BrickArtist.com

In Canterbury, Glasgow and Manchester, we’re starting a journal club, as part of uki-sigcse.acm.org, the Association for Computing Machinery (ACM) Special Interest Group (SIG) on Computer Science Education (CSE). Journal clubs are like a book clubs, but instead of chatting about books we discuss journal papers instead. Who should come? What’s on the agenda? How can you join and what are our club rules? Read on…

Who should come?

Our journal club will be of interest to:

  • Educators who teach some flavour of computing or you run a coding boot camp.
  • Employers who employ and train software engineers, data scientists, developers, coders, programmers, etc
  • Employees your boss has sent you on a training program or bootcamp to learn or improve your programming
  • Students what misconceptions about programming have you encountered?
  • Everyone and anyone who is curious. Our doors are open, this is not an ivory tower. Everyone has something to learn, everyone has something to teach.

Agenda: The paper we’ll be discussing

If you’d like to join us, read the paper: Identifying Student Misconceptions of Programming by Lisa Kaczmarczyk et al [1] which was voted a top paper from the last 50 years by SIGCSE members in 2019. Here is a summary:

Computing educators are often baffled by the misconceptions that their CS1 students hold. We need to understand these misconceptions more clearly in order to help students form correct conceptions. This paper describes one stage in the development of a concept inventory for Computing Fundamentals: investigation of student misconceptions in a series of core CS1 topics previously identified as both important and difficult. Formal interviews with students revealed four distinct themes, each containing many interesting misconceptions. Three of those misconceptions are detailed in this paper: two misconceptions about memory models, and data assignment when primitives are declared. Individual misconceptions are related, but vary widely, thus providing excellent material to use in the development of the CI. In addition, CS1 instructors are provided immediate usable material for helping their students understand some difficult introductory concepts.

In case you’re wondering, CS1 refers to the first course in the introductory sequence of a computer science major (in American parlance), roughly equivalent to first year undergraduate in the UK. CI refers to a Concept Inventory, a test designed to tell teachers exactly what students know and don’t know. According to Reinventing Nerds, the paper has been influential because it was the “first to apply rigorous research methods to investigating misconceptions”. After a brief introduction to the paper and its authors we will discuss the following:

  • What is good about the paper?
  • What could be improved?
  • What is the most surprising or interesting thing you got from the paper?
  • How convincing is the evidence, arguments and conclusions presented?
  • How could you use the results and insights in your own teaching or training program?
  • What are the next steps that follow on from this research? What has already been done to follow on from this work?
  • Has consensus and opinion moved since the publication of this paper ten years ago? If so, how and why?
  • Why was this paper voted top 10 of all time by SIGCSE.org members?
  • Are there any elephants in the room? Does the paper omit anything relevant or gloss over important details?
  • What do we know that we know (Rumsfeld’s known knowns)
  • What do we know that we don’t know (Rumsfeld’s known unknowns)
  • A.O.B.: Any other questions or comments?
  • Why was this paper chosen for journal club?
  • What paper should we discuss at our next meeting?

How can you join?

We’ll be meeting in the Atlas rooms, Kilburn building, Department of Computer Science, University of Manchester, M13 9PL, see bit.ly/directions-to-kilburn-building and www.cs.manchester.ac.uk/about/maps-and-travel online using Zoom, find login details and register at sigman1.eventbrite.co.uk.

Can’t make it this time? Groups will be running in parallel in Glasgow (23rd March at 1pm with Quintin Cutts) and Canterbury (Friday 27th March, 14.00, Room S132 in the Cornwallis building, School of Computing with Sally Fincher) to discuss the same paper. You can also join us online using the hashtag #SIGCSEJClub. If you’d like to know about future journal clubs in Manchester send an email to with the text…

subscribe sigcse-journal-club yourfirstname yoursecondname

…in the body of your email.

Start your own local journal club

If Manchester, Glasgow or Canterbury aren’t easy for you to get to, start your own journal club by joining SIGCSE at uki-sigcse.acm.org/membership and posting the details to their mailing list. We plan to have regular journal clubs every three months or so where we’ll discuss the same paper nationally during journal club week: this one is Monday 23rd to Friday 27th March.

 

Journal club rules

We will loosely be following the guidelines at Ten Simple Rules for Running a Journal Club including:

  • It will be casual  not formal. There will be coffee and refreshments available. We won’t be providing lunch but feel free to bring your own. Some companies call them brown bag meetings, because many of us may will only have an hour so we need to get straight down to business.
  • It’s about more than just the articles. We are building (and strengthening) communities of practice amongst peers in Computer Science education, not just inside academia but in industry as well. Don’t be shy, all are welcome!
  • Multidisciplinary is not a dirty word: we aim to foster equality, diversity and inclusion of different people, disciplines, practices and viewpoints. That means we’re open to anyone teaching computer science. That could be in a school, FE college, University, bootcamp, onboarding scheme, company induction or employers staff training program etc. Students are welcome too. The more diverse our journal club is, the stronger it will be.
  • Topics will reflect the diversity of our membership. We’ve started with student misconceptions, but we invite proposals for which paper we should discuss at our next meeting so we can vote on them.
  • We’ll pick interesting papers, but they don’t have to be award winning. Papers don’t need to be heavily cited either, but they do have to be thought provoking and provide something meaty to discuss alongside practical tips that can be put into practice straight away.

Any questions? Let me know in the comments section below, via email or twitter.

You might also like…

If you care about the training & education of software engineers and computer scientists, you might also be interested in #CSEdResearchBookClub which will take place on Thursday 5th March at 8pm. They’ll be discussing a paper by Sue Sentance et al. on using Predict, Run, Investigate, Modify & Make (PRIMM) called Teaching computer programming with PRIMM: a sociocultural perspective. CS education book club is co-ordinated by Jane Waite at Queen Mary University of London (QMUL) see below:

References

  1. Kaczmarczyk, Lisa C.; Petrick, Elizabeth R.; East, J. Philip; Herman, Geoffrey L. (2010). Identifying student misconceptions of programming, SIGCSE ’10: Proceedings of the 41st ACM technical symposium on Computer science educationages 107–111doi:10.1145/1734263.1734299

June 29, 2019

The Small Scale Experimental Beer Machine aka “Manchester Beerby”

beerby

The Small Scale Experimental Beer Machine (aka Manchester Beerby) has its name in neon lights and was switched on on the 21st June 2019.

A new pub has opened opposite where I work. Set up by some enterprising scotsmen from Aberdeenshire (🏴󠁧󠁢󠁳󠁣󠁴󠁿 och aye laddie!), it has its very own microbrewery. They have called the microbrewery the The Small Scale Experimental Beer Machine (SSEBM).

As I work in a Computer Science department, this pleased me no end, because it is an appropriate nod to the Small-Scale Experimental Machine (SSEM) aka the Manchester Baby: the world’s first computer with random access memory (RAM).

Both of these machines were switched on on the 21st June (memory day), one in 1948 the other 71 years later in 2019. Unlike the Manchester Baby, you will actually be able to drink the output of the “Manchester Beerby” 🍺 and it is going to be a lot more quaffable than anything you might find in a cathode ray tube. [1]

The pub is in the heart of a new Bruntwood development called University Green, a pleasant leafy space with retail and restaurants centred around the Alliance Manchester Business School (AMBS). Like most things in the green, its a bit pricey but the beer is good, the food is tasty and the staff are friendly. Brewdog Outpost Manchester is a relaxing place to hang out.

I wonder what the engineers of the Manchester Baby, Tom Kilburn and Freddie Williams, would make of the Manchester Beerby? 🍻

References

  1. Williams, Frederic Kilburn, Tom (1948). Electronic Digital Computers. Nature162(4117): 487. DOI:10.1038/162487a0

 

June 23, 2017

Nine ideas for teaching Computing at School from the 2017 CAS conference

CAS

Delegates at the Computing at School conference 2017 #CASConf17 answering diagnostic questions, picture by Miles Berry.

The Computing At School (CAS) conference is an annual event for educators, mostly primary and secondary school teachers from the public and private sector in the UK. Now in its ninth year, it attracts over 300 delegates from across the UK and beyond to the University of Birmingham, see the brochure for details. One of the purposes of the conference is to give teachers new ideas to use in their classrooms to teach Computer Science and Computational Thinking. I went along for my first time (*blushes*) seeking ideas to use in an after school Code Club (ages 7-10) I’ve been running for a few years and also for approaches that undergraduate students in Computer Science (age 20+) at the University of Manchester could use in their final year Computer Science Education projects. So here are nine ideas (in random brain dump order) I’ll be putting to immediate use in clubs, classrooms, labs and lecture theatres:

  1. Linda Liukas demonstrated some intriguing ideas from her children’s books and HelloRuby.com that are based on Montessori education. I shall be trying some of these out (particularly the storytelling stuff) at code club to keep girls involved
  2. Sue Sentance and Neil Brown from King’s College London gave an overview of some current research in pedagogy.  They discussed research questions that can be tackled in the classroom like (for example) do learners make more progress using visual programming languages (like Scratch and Blockly) or traditional text-based languages (like Python and Java etc)? Many of these research questions would make good projects for undergraduate students to investigate in secondary schools, see research on frame based editors, for example.
  3. Michel Wermelinger from the Open University demonstrated using iPython notebooks for teaching data literacy at the Urban Data School. Although I’m familiar with iPython, it had never occurred to me to actually use iPython in school for teaching. It is a no-brainer, when you think about it, even for primary, because you have your code, inputs and outputs all in one window, and can step through code execution instead of (or as well as) using more conventional tools like Trinket, Thonny or IDLE. Data literacy is fun to teach.
  4. Miles Berry from the University of Roehampton demonstrated Diagnostic Questions in Project Quantum. These are a collection of high quality quizzes to use interactively for example as hinge questions, where teaching is adapted depending on answers given, like this multiple choice question:
    Consider the following Python code:
    
    a = 20
    b = 10
    a = b
    
    What are the values of a and b?
    
    A: a = 10, b = 10
    B: a = 20, b = 20
    C: a = 30, b = 10
    D: a = 10, b = 20
    

    You’ll have to try these five questions to check your answer. The useful thing here is that DiagnosticQuestions.com (the platform on which this is built) allows you to see lots of responses, for example each answer (A, B, C or D) above was selected by 25% of participants. You can also view explanations which illuminate common misconceptions (e.g. the classic mistake of confusing assignment with equality) as well as providing a bank of free questions for use in the classroom.

  5. Mark Guzdial from GeorgiaTech discussed using learning sciences to improve computing teaching. He demonstrated predictive questions (e.g. ask students What do you think will happen when we run this code? before actually executing it) alongside what he called subgoal labelling. These are simple ideas (with proven benefits) that can be put to use immediately. I’ll also be trying the Live Coding (with Sonic Pi) and Media Computation he demonstrated asap.
  6. Laurence Rogers demonstrated Insight: Mr. Bit  this looks like a good app for using BBC microbits in the classroom, connected to a range of sensors, provided you’ve got access to iPads.
  7. A copy of Hello World magazine was in the conference bag. The summer 2017 issue has an unusual article from Ian Benson from Kingston University and Jenny Cane describing their use of the Haskell programming language to teach 5-7 year olds to reason symbolically and learn algebra before arithmetic with help from Cuisenaire rods. The Scratch Maths project at University College London are doing similar things, building mathematical knowledge using Scratch, rather than Haskell. These are experimental ideas you could try out on unsuspecting (junior) family members.
  8. Lee Goss from Barefoot Computing, described the free CPD for primary school teachers on offer from BT. I’ve signed up and hope to plug some of the shortcomings in the Code Club Curriculum.
  9. Richard Jarvis demonstrated appJar, a handy Python library for teaching Graphical User Interfaces (GUIs). That’s Jar as in Jarvis and Jam, not JAR as in Java ARchive BTW. I’ve not tried GUIs at code club yet, but appJar looks like a good way to do it.

There were lots more people and projects at the conference not mentioned here including tonnes of workshops. If you’re interested in any of the above, the CAS conference will be back in 2018. Despite the challenging problems faced by Computer Science at GCSE level, it was reassuring and inspiring to meet some members of the vibrant, diverse and friendly community pushing the boundaries of computing in schools across the United Kingdom. Thanks again to everyone at CAS for putting on another great event, I will definitely consider attending next year and maybe you should too.

August 20, 2012

Digital Research 2012: September 10th-12th at St. Catherine’s College, Oxford, UK

The Radcliffe Camera, Oxford by chensiyuan

The Radcliffe Camera, Oxford by chensiyuan via wikipedia

The UK’s premier Digital Research community event is being held in Oxford 10-12 September 2012. Come along to showcase and share the latest in digital research practice – and set the agenda for tomorrow at Digital Research 2012. The conference features an exciting 3-day programme with a great set of invited speakers together with showcases of the work and vision of the Digital Research community. Here are some highlights of the programme – please see the website digital-research.oerc.ox.ac.uk for the full programme and registration information.

New Science of New Data Symposium and Innovation Showcase  on Monday 10th: Keynotes from Noshir Contractor [1] (Northwestern University) on Web Science, Nigel Shadbolt (Government Information Adviser) on Open Data and a closing address by Kieron O’Hara (computer scientist) – with twitter analytics, geolocated social media and web observatories in between. Also the launch of the Software Sustainability Institute’s Fellows programme and community workshops.

Future of Digital Research on Tuesday 11th: Keynotes from Stevan Harnad on “Digital Research: How and Why the Research Councils UK Open Access Policy Needs to Be Revised” [2], Jim Hendler (Rensselaer Polytechnic Institute) on “Broad Data” (not just big!), and Lizbeth Goodman (University College Dublin) on “SMART spaces by and for SMART people”. Sessions are themed on Open Science with a talk by Peter Murray-Rust, Smart Spaces as a Utility and future glimpses from the community, all culminating in a Roundtable discussion on the Future of Digital Research.

e–Infrastructure Forum and Innovation Showcase on Wednesday 12th opens with a dual-track community innovation showcase, then launch the UK e-Infrastructure Academic Community Forum where Peter Coveney (UK e-Infrastructure Leadership Council and University College London) will present the “state of the nation” followed by a Provider’s Panel, Software, Training and User’s Panel – an important and timely opportunity for the community to review current progress and determine what’s needed in the future.

There’s a lot more happening throughout the event, including an exciting “DevChallenge” hackathon run by DevCSI, software surgery by the Software Sustainability Institute (SSI) and multiple community workshops – plus the Digital Research 2012 dinner in College and a reception in the spectacular Museum of Natural History in Oxford. Digital Research 2012 is very grateful to everyone who has come together to make this event possible, including e-Research South, Open Knowledge Foundation, Web Science, the Digital Social Research programme, our Digital Economy colleagues and the All Hands Foundation.

We look forward to seeing you at Digital Research 2012 in Oxford in September.

References

  1. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M. & (2009). Social Science: Computational Social Science, Science, 323 (5915) 723. DOI: 10.1126/science.1167742
  2. Stevan Harnad (2012). Open access: A green light for archiving, Nature, 487 (7407) 302. DOI: 10.1038/487302b

June 15, 2012

Alan Turing Centenary Conference, 22nd-25th June 2012

Alan Turing by Michael Dales

The Alan Turing statue at Bletchley Park. Creative commons licensed picture via Michael Dales on Flickr

Next weekend, a bunch of very distinguished computer scientists will rock up at the magnificent Manchester Town Hall for the Turing Centenary Conference in order to analyse the development of Computer ScienceArtificial Intelligence and Alan Turing’s legacy [1].

There’s an impressive and stellar speaker line-up including:

Tickets are not cheap at £450 for four days, but you can sign up for free public lectures by Jack Copeland on Turing: Pioneer of the Information Age and Roger Penrose on the problem of modelling a mathematical mind. Alternatively, if you can lend some time, the conference organisers are looking for volunteers to help out in return for a free conference pass. Contact Vicki Chamberlin for details if you’re interested.

References

  1. Chouard, T. (2012). Turing at 100: Legacy of a universal mind Nature, 482 (7386), 455-455 DOI: 10.1038/482455a see also nature.com/turing

Blog at WordPress.com.