O'Really?

September 6, 2021

Join us to discuss why computing students should contribute to open source software projects on Mon 6th September at 2pm BST

unlocked padlock by flaticon.com

Why should students bother with open source software? Join us to discuss why via a viewpoint piece published by Diomidis Spinellis of Athens University and Delft University of Technology published in the July issue of Communications of the Association for Computing Machinery. [1] Here’s the introduction 

Learning to program is—for many practical, historical, as well as some vacuous reasons—a rite of passage in probably all computer science, informatics, software engineering, and computer engineering courses. For many decades, this skill would reliably set computing graduates apart from their peers in other disciplines. In this Viewpoint, I argue that in the 21st century programming proficiency on its own is neither representative of the skills that the marketplace requires from computing graduates, nor does it offer the strong vocational qualifications it once did. Accordingly, I propose that computing students should be encouraged to contribute code to open source software projects through their curricular activities. I have been practicing and honing this approach for more than 15 years in a software engineering course where open source contributions are an assessed compulsory requirement. Based on this experience, I explain why the ability to make such contributions is the modern generalization of coding skills acquisition, outline what students can learn from such activities, describe how an open source contribution exercise is embedded in the course, and conclude with practices that have underpinned the assignment’s success

All welcome, as usual, we’ll be meeting on Zoom see sigcse.cs.manchester.ac.uk/join-us for details.

References

  1. Spinellis, Diomidis (2021). “Why computing students should contribute to open source software projects”. Communications of the ACM64 (7): 36–38. DOI:10.1145/3437254

July 5, 2021

Join us to discuss the tyranny of content on Monday 5th July at 2pm BST

Filed under: Teaching,Uncategorized — Duncan Hull @ 11:56 am
Tags: , , , ,
CC-BY-SA image of Bill Gates by Kuhlmann MSC via Wikimedia Commons w.wiki/3W7k

If content is king, then his rule is tyrannical. Bill Gates once remarked that “Content is King” but In the kingdom of education, how much do educators oppressively inflict content on their learners? What can be done to reduce the tyranny of content? We’ll be discussing this via a paper by Christina I. Petersen et al, here’s the abstract:

Instructors have inherited a model for conscientious instruction that suggests they must cover all the material outlined in their syllabus, and yet this model frequently diverts time away from allowing students to engage meaningfully with the content during class. We outline the historical forces that may have conditioned this teacher-centered model as well as the disciplinary pressures that inadvertently reward it. As a way to guide course revision and move to a learner-centered teaching approach, we propose three evidence-based strategies that instructors can adopt: 1) identify the core concepts and competencies for your course; 2) create an organizing framework for the core concepts and competencies; and 3) teach students how to learn in your discipline. We further outline examples of actions that instructors can incorporate to implement each of these strategies. We propose that moving from a content-coverage approach to these learner-centered strategies will help students better learn and retain information and apply it to new situations.

All welcome. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details.

References

  1. Petersen, Christina I.; Baepler, Paul; Beitz, Al; Ching, Paul; Gorman, Kristen S.; Neudauer, Cheryl L.; Rozaitis, William; Walker, J. D.; Wingert, Deb; Reiness, C. Gary (2020). The Tyranny of Content: “Content Coverage” as a Barrier to Evidence-Based Teaching Approaches and Ways to Overcome It. CBE—Life Sciences Education19 (2): ar17. doi:10.1187/cbe.19-04-0079

June 3, 2021

Join us to discuss cognitive load on Monday 7th June at 2pm #SIGCSE

Filed under: education — Duncan Hull @ 8:07 am
Tags: , , , ,

Cognitive Load Theory provides a basis for understanding the learning process. It has been widely used to improve the teaching and learning of many subjects including Computer Science. But how can it help us build better collaborative learning experiences? Join us to discuss via a paper by Paul Kirschner, John Sweller, Femke Kirschner & Jimmy Zambrano R. [1] From the abstract:

Cognitive load theory has traditionally been associated with individual learning. Based on evolutionary educational psychology and our knowledge of human cognition, particularly the relations between working memory and long-term memory, the theory has been used to generate a variety of instructional effects. Though these instructional effects also influence the efficiency and effectiveness of collaborative learning, be it computer supported or face-to-face, they are often not considered either when designing collaborative learning situations/environments or researching collaborative learning. One reason for this omission is that cognitive load theory has only sporadically concerned itself with certain particulars of collaborative learning such as the concept of a collective working memory when collaborating along with issues associated with transactive activities and their concomitant costs which are inherent to collaboration. We illustrate how and why cognitive load theory, by adding these concepts, can throw light on collaborative learning and generate principles specific to the design and study of collaborative learning.

Thanks to Nicola Looker for suggesting this months paper. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details.

References

  1. Kirschner, Paul A.; Sweller, John; Kirschner, Femke; Zambrano R., Jimmy (2018). “From Cognitive Load Theory to Collaborative Cognitive Load Theory”. International Journal of Computer-Supported Collaborative Learning13 (2): 213–233. DOI:10.1007/s11412-018-9277-y

May 5, 2021

Join us to discuss what goes on in the mind of Teaching Assistants on Monday 10th May at 2pm BST

Filed under: education — Duncan Hull @ 11:13 am
Tags: , , , , , ,
Thinking icon via flaticon.com

Both graduate and undergraduate teaching assistants (TAs) are crucial to facilitating students learning. What goes on inside the mind of a teaching assistant? How can understanding this help us train TA’s better for the roles they play in education? Join us to discuss via a paper by Julia M. Markel and Philip Guo. [1] From the abstract:

As CS enrolments continue to grow, introductory courses are employing more undergraduate TAs. One of their main roles is performing one-on-one tutoring in the computer lab to help students understand and debug their programming assignments. What goes on in the mind of an undergraduate TA when they are helping students with programming? In this experience report, we present firsthand accounts from an undergraduate TA documenting her 36 hours of in-lab tutoring for a CS2 course, where she engaged in 69 one-on-one help sessions. This report provides a unique perspective from an undergraduate’s point-of-view rather than a faculty member’s. We summarise her experiences by constructing a four-part model of tutoring interactions: a) The tutor begins the session with an initial state of mind (e.g., their energy/focus level, perceived time pressure). b) They observe the student’s outward state upon arrival (e.g., how much they seem to care about learning). c) Using that observation, the tutor infers what might be going on inside the student’s mind. d) The combination of what goes on inside the tutor’s and student’s minds affects tutoring interactions, which progress from diagnosis to planning to an explain-code-react loop to post-resolution activities. We conclude by discussing ways that this model can be used to design scaffolding for training novice TAs and software tools to help TAs scale their efforts to larger classes.

This paper was one of nine best papers at SIGCSE 2021, there’s a video of the paper presentation on pathable.sigcse2021.org. All welcome. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details.

References

  1. Markel, Julia M. and Guo, Philip (2021) Inside the Mind of a CS Undergraduate TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs SIGCSE ’21: Proceedings of the 52nd ACM Technical Symposium on Computer Science EducationMarch 2021 Pages 502–508 DOI: 10.1145/3408877.3432533 (open access)

March 23, 2021

Join us to discuss learning sciences for computing education on Monday 12th April at 2pm BST

Scientist icon made by Eucalyp via flaticon.com

Learning sciences aims to improve our theoretical understanding of how people learn while computing education investigates with how people learn to compute. Historically, these fields existed independently, although attempts have been made to merge them. Where do these disciplines overlap and how can they be integrated further? Join us to discuss learning sciences for computing education via a paper by Lauren Margulieux, Brian Dorn and Kristin Searle, from the abstract:

This chapter discusses potential and current overlaps between the learning sciences and computing education research in their origins, theory, and methodology. After an introduction to learning sciences, the chapter describes how both learning sciences and computing education research developed as distinct fields from cognitive science. Despite common roots and common goals, the authors argue that the two fields are less integrated than they should be and recommend theories and methodologies from the learning sciences that could be used more widely in computing education research. The chapter selects for discussion one general learning theory from each of cognition (constructivism), instructional design (cognitive apprenticeship), social and environmental features of learning environments (sociocultural theory), and motivation (expectancy-value theory). Then the chapter describes methodology for design-based research to apply and test learning theories in authentic learning environments. The chapter emphasizes the alignment between design-based research and current research practices in computing education. Finally, the chapter discusses the four stages of learning sciences projects. Examples from computing education research are given for each stage to illustrate the shared goals and methods of the two fields and to argue for more integration between them.

There’s a 5 minute summary of the chapter ten minutes into the video below:

All welcome. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details. Thanks to this months paper suggestions from Sue Sentance and Nicola Looker.

References

  1. Margulieux, Lauren E.; Dorn, Brian; Searle, Kristin A. (2019). “Learning Sciences for Computing Education“: 208–230. doi:10.1017/9781108654555.009. in In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge, UK: Cambridge University Press

February 24, 2021

Join us to discuss teaching social responsibility and justice in Computer Science on Monday 1st March at 2pm GMT

Scales of justice icon made by monkik from flaticon.com

With great power comes great responsibility. [1] Given their growing power in the twenty-first century, computer scientists have a duty to society to use that power responsibly and justly. How can we teach this kind of social responsibility and ethics to engineering students? Join us to discuss teaching social justice in computer science via a paper by Rodrigo Ferreira and Moshe Vardi at Rice University in Houston, Texas published in the sigcse2021.sigcse.org conference [2]. From the abstract of the preprint:

As ethical questions around the development of contemporary computer technologies have become an increasing point of public and political concern, computer science departments in universities around the world have placed renewed emphasis on tech ethics undergraduate classes as a means to educate students on the large scale social implications of their actions. Committed to the idea that tech ethics is an essential part of the undergraduate computer science educational curriculum, at Rice University this year we piloted a redesigned version of our Ethics and Accountability in Computer Science class. This effort represents our first attempt at implementing a “deep” tech ethics approach to the course.

Incorporating elements from philosophy of technology, critical media theory, and science and technology studies, we encouraged students to learn not only ethics in a “shallow” sense, examining abstract principles or values to determine right and wrong, but rather looking at a series of “deeper” questions more closely related to present issues of social justice and relying on a structural understanding of these problems to develop potential socio-technical solutions. In this article, we report on our implementation of this redesigned approach. We describe in detail the rationale and strategy for implementing this approach, present key elements of the redesigned syllabus, and discuss final student reflections and course evaluations. To conclude, we examine course achievements, limitations, and lessons learned toward the future, particularly in regard to the number escalating social protests and issues involving Covid-19.

This paper got me thinking:

Houston, we’ve had your problem!

After paging the authors in Houston with the message above there was initial radio silence.

Beep - beep - beep [white noise] Beep - beep - beep...

Hello Manchester, this is Houston, Can we join you?

So we’re delighted to be joined LIVE by the authors of the paper Rodrigo Ferreira and Moshe Vardi from Houston, Texas. They’ll give a lightning talk outlining the paper before we discuss it together in smaller break out groups.

Their paper describes a problem everyone in the world has had in teaching ethics in Computer Science recently. How can we make computing more ethical?

All welcome. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details.

References

  1. Spider-Man (1962) https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility
  2. Rodrigo Ferreira and Moshe Vardi (2021) Deep Tech Ethics An Approach to Teaching Social Justice in Computer Science in Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM, New York, NY, USA. DOI:10.1145/3408877.3432449
  3. Jack Swigert (1970) https://en.wikipedia.org/wiki/Houston,_we_have_a_problem

January 18, 2021

Join us to discuss failure rates in introductory programming courses on 1st Feb at 2pm GMT

Filed under: education — Duncan Hull @ 12:39 pm
Tags:
Icons made by freepik from flaticon.com

Following on from our discussion of ungrading, this month we’ll be discussing pass/fail rates in introductory programming courses. [1] Here is the abstract:

Vast numbers of publications in computing education begin with the premise that programming is hard to learn and hard to teach. Many papers note that failure rates in computing courses, and particularly in introductory programming courses, are higher than their institutions would like. Two distinct research projects in 2007 and 2014 concluded that average success rates in introductory programming courses world-wide were in the region of 67%, and a recent replication of the first project found an average pass rate of about 72%. The authors of those studies concluded that there was little evidence that failure rates in introductory programming were concerningly high.

However, there is no absolute scale by which pass or failure rates are measured, so whether a failure rate is concerningly high will depend on what that rate is compared against. As computing is typically considered to be a STEM subject, this paper considers how pass rates for introductory programming courses compare with those for other introductory STEM courses. A comparison of this sort could prove useful in demonstrating whether the pass rates are comparatively low, and if so, how widespread such findings are.

This paper is the report of an ITiCSE working group that gathered information on pass rates from several institutions to determine whether prior results can be confirmed, and conducted a detailed comparison of pass rates in introductory programming courses with pass rates in introductory courses in other STEM disciplines.

The group found that pass rates in introductory programming courses appear to average about 75%; that there is some evidence that they sit at the low end of the range of pass rates in introductory STEM courses; and that pass rates both in introductory programming and in other introductory STEM courses appear to have remained fairly stable over the past five years. All of these findings must be regarded with some caution, for reasons that are explained in the paper. Despite the lack of evidence that pass rates are substantially lower than in other STEM courses, there is still scope to improve the pass rates of introductory programming courses, and future research should continue to investigate ways of improving student learning in introductory programming courses.

As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details.

Thanks to Brett Becker and Joseph Allen for this months #paper-suggestions via our slack channel at uk-acm-sigsce.slack.com.

References

  1. Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gonsalvez, Juho Leinonen, Jack Parkinson, Matthew Poole, Neena Thota (2019) Pass Rates in Introductory Programming and in other STEM Disciplines in ITiCSE-WGR ’19: Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education, Pages 53–71 DOI: 10.1145/3344429.3372502

November 2, 2020

Join us to discuss why minimal guidance doesn’t work on Monday 2nd November at 2pm GMT

Photo via NESA by Makers on Unsplash

Minimal guidance is a popular approach to teaching and learning. This technique advocates teachers taking a back seat to facilitate learning by letting their students get on with it. Minimal guidance comes in many guises including constructivism, discovery learning, problem-based learning, experiential learning, active learning, inquiry-based learning and even lazy teaching. According to its critics, unguided and minimally guided approaches don’t work. Join us to discuss why via a paper [1] published by Paul KirschnerJohn Sweller and Richard Clark, here is the abstract:

Evidence for the superiority of guided instruction is explained in the context of our knowledge of human cognitive architecture, expert–novice differences, and cognitive load. Although unguided or minimally guided instructional approaches are very popular and intuitively appealing, the point is made that these approaches ignore both the structures that constitute human cognitive architecture and evidence from empirical studies over the past half-century that consistently indicate that minimally guided instruction is less effective and less efficient than instructional approaches that place a strong emphasis on guidance of the student learning process. The advantage of guidance begins to recede only when learners have sufficiently high prior knowledge to provide “internal” guidance. Recent developments in instructional research and instructional design models that support guidance during instruction are briefly described.

This is a controversial, heavily cited and politically motivated paper which has provoked numerous rebuttals, making it an ideal candidate for a juicy journal club discussion!

As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details and meeting URLs.

References

  1. Kirschner, Paul A.; Sweller, John; Clark, Richard E. (2006). “Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching”. Educational Psychologist. 41 (2): 75–86. DOI: 10.1207/s15326985ep4102_1

July 2, 2020

Join us to discuss blended learning & pedagogy in Computer Science on Monday 6th July at 3pm

What is innovative pedagogy? CC licensed image by @giuliaforsythe

Join us for our next journal club meeting on Monday 6th July at 3pm, the papers we’ll be discussing below come from the #paper-suggestions channel of our slack workspace at uk-acm-sigsce.slack.com.

Show me the pedagogy!

The first paper is a short chapter by Katrina Falkner and Judy Sheard which gives an overview of pedagogic approaches including active learning, collaborative learning, cooperative learning, contributing student pedagogy (CSP), blended learning and MOOCs. [1] This was published last year as chapter 15 of the Cambridge Handbook on Computing Education Research edited by Sally Fincher and Anthony V. Robins. A lot of blended learning resources focus on technology, this chapter talks about where blended learning fits with a range of different pedagogic approaches.

A video summary of all sixteen chapters of the Cambridge Handbook of Computing Education Research, including chapter 15 which we’ll be discussing

Implementing blended learning

The second paper (suggested by Jane Waite) is Design and implementation factors in blended synchronous learning environments [2], here’s a summary from the abstract:

Increasingly, universities are using technology to provide students with more flexible modes of participation. This article presents a cross-case analysis of blended synchronous learning environments—contexts where remote students participated in face-to-face classes through the use of rich-media synchronous technologies such as video conferencing, web conferencing, and virtual worlds. The study examined how design and implementation factors influenced student learning activity and perceived learning outcomes, drawing on a synthesis of student, teacher, and researcher observations collected before, during, and after blended synchronous learning lessons. Key findings include the importance of designing for active learning, the need to select and utilise technologies appropriately to meet communicative requirements, varying degrees of co-presence depending on technological and human factors, and heightened cognitive load. Pedagogical, technological, and logistical implications are presented in the form of a Blended Synchronous Learning Design Framework that is grounded in the results of the study.

Hope to see you there, zoom details are on the slack channel, email me if you’d like to request an invitation to the slack channel. Likewise, if you don’t have access to the papers let me know.

References

  1.  Falkner, Katrina; Sheard, Judy (2019). “Pedagogic Approaches”: 445–480. doi:10.1017/9781108654555.016. Chapter 15 of the The Cambridge Handbook of Computing Education Research
  2. Bower, Matt; Dalgarno, Barney; Kennedy, Gregor E.; Lee, Mark J.W.; Kenney, Jacqueline (2015). “Design and implementation factors in blended synchronous learning environments: Outcomes from a cross-case analysis”. Computers & Education86: 1–17. doi:10.1016/j.compedu.2015.03.006ISSN 0360-1315.

May 26, 2020

Join us to discuss blended learning, Monday 1st June at 11am on Zoom

Filed under: education,Uncategorized — Duncan Hull @ 2:41 pm
Tags: ,

7704609288_14d335dd87_cAt our next journal club, on Monday 1st June at 11am, we’ll be discussing blended learning. We’ve picked a subject, but we haven’t picked a paper yet. So, if you know interesting papers on blended learning, post them to the “paper suggestions” channel at  uk-acm-sigsce.slack.com – there are a few suggestions up there already for starters.

If you’ve not got access to the workspace yet, ping me or Alcywn Parker and we’ll add you to the group. Journal Club is part of the Association for Computing Machinery (ACM) Special Interest Group (SIG) on Computer Science Education (CSE) – all welcome!

Next Page »

Blog at WordPress.com.